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INVITED ARTICLE

Cholesteric blue phases: effect of strong confinement

J. Fukudaa,b* and S. Žumerbc

aNanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono,

Tsukuba 305-8568, Japan; bDepartment of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia; cJožef Stefan

Institute, Jamova 39, 1000 Ljubljana, Slovenia

(Received 3 February 2010; accepted 17 March 2010)

After an overview of cholesteric blue phases, we review our recent numerical studies on possible defect structures
when blue phase I (BP I) is confined in a thin cell composed of two parallel surfaces imposing homeotropic
anchoring. The cell thickness is of the order of the unit cell dimension of the bulk cubic BP I. We find several
structures of disclination lines which, to our knowledge, have never been discussed in the field of liquid crystals as
equilibrium structures. Those structures include a parallel array of double helix disclination lines, and two parallel
arrays of undulating disclination lines almost (but not exactly) perpendicular to each other. A first-order transition
between those two structures is possible, and the similarity between them is discussed.

Keywords: cholesteric blue phase; confinement; Landau–de Gennes theory; disclination; double-helix structures

1. Introduction

Cholesteric blue phases (BPs) [1–8] are peculiar chiral

mesophases that occur over a narrow temperature

range between the isotropic and cholesteric, or chiral
nematic, phases of highly chiral compounds. Blue

phases provide an intriguing example of a three-

dimensional ordered structure of a liquid crystal, and

an important key to the understanding of the struc-

tures is that a local double-twist structure, in which the

directors display helical ordering along two orthogo-

nal directions, is energetically preferred in comparison

to a simple-twist cholesteric structure. Double-twist
order is perfectly realised in the centre of a cylinder,

while with increased radius it is less and less pro-

nounced. This leads to a limitation on the double-

twist cylinder diameter and thus to phases with spatial

superstructures of double-twist cylinders. Due to

topological constraints on the nematic ordering, the

arrangement of double-twist cylinders is complemen-

ted by a network of disclination lines with�1=2 wind-
ing number. The structure can be understood in terms

of a delicate balance between energetically favourable

regions of double-twist order and the energetic cost of

disclination lines. These complex structures yield

phases with an effective isotropic index of refraction

(no birefringence) but with high rotary power of

polarised light.

Alfred Saupe [9] was the first to recognise that
cubic symmetry of the twisted director field accompa-

nied with a network of disclinations is needed to

describe a blue phase with optical isotropy. He

proposed a model based on minimal periodic surfaces

forming a cubic lattice with O5 (I432) symmetry [9].

Later, detailed experimental studies, reviewed in depth

in [2, 5, 6, 8], showed that Saupe’s BP model is not

realised in nature where three thermodynamically dis-

tinct blue phases can be observed. Depending on the
strength of the molecular chirality they occur in the

order BP III, BP II, BP I upon lowering the tempera-

ture. The BP III has an amorphous assembly of dou-

ble-twist forms with the same symmetry as the

isotropic fluid. In contrast, BP I and BP II both exhibit

orientational order on a cubic lattice with unit cells of

several hundred nanometres, thus leading to Bragg

reflection of light in the visible and ultraviolet wave-
length range. The corresponding space groups are O8�

(I4132) and O2(P4232), respectively, and illustrations

of the structures of BP I and II are given in Figure 1.

The unique combination of full fluidity and three-

dimensional crystalline orientational order makes the

cubic blue phases highly appealing for optical applica-

tions. Unfortunately, the delicate balance between the

formation of double-twist and disclination lines yields
a narrow stability range of the blue phases. Typically,

the range is less than 1 K just below the isotropic phase

and thus providing severe limitations to any potential

device application. However, recently blue phases with

substantially extended stability ranges, of more than

40 K including room temperature, have been reported

in systems using the photo-crosslinking of polymers

[10] or the addition of bimesogenic units [11].
Realisation of blue phases with a wide temperature
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range has revived interest in the possibility of practical

application of blue phases. Lasing of blue phases was

reported [12, 13] and recently also the first display

based on the switching of the blue phase structure

was constructed [14].

Theoretical studies to understand the structures of

blue phases were carried out mainly in the 1980s fol-

lowing on from insight of Saupe [9] on their cubic
nature and the accumulation of experimental knowl-

edge. Although some are based on a Frank elastic

theory in terms of a director n [15, 16], many of them

deal with the orientational order using a second-rank

tensor order parameter Qab following in the spirit of

Landau and de Gennes [3, 17, 18] (and references

therein). Those analytical studies contributed greatly

to the clarification of the equilibrium properties of
cubic blue phases. However, it was not clear whether

mode expansions of Qab necessary for the calculations

to be analytically tractable were fully justified. Since

2005, there have been several numerical attempts

[19–26] to evaluate the order parameter profile of

blue phases without relying on mode expansions.

Those studies concern phase diagrams [19, 20], struc-

tural changes under an applied electric field [21, 24],
and blue phases with colloidal particles [26].

In the present paper, we review our recent study on

the effect of strong confinement on the defect struc-

tures of cholesteric blue phases, which was presented

briefly in our previous letter [25]. Although a liquid

crystal in confined geometries is an important subject

in practical applications such as liquid crystal displays,

as well as in fundamental science [27], only very few
studies, which are interested in blue phases in the

Cano-wedge geometry [28, 29], have been carried out

to investigate how blue phases behave in confinement.

Here we are interested in the configurations of choles-

teric blue phases in a thin planar cell where the separa-

tion of the two surfaces is of the order of the dimension

of the bulk BP unit cell. We will show in detail the

defect structures found in our numerical calculations.

2. Theoretical modelling for confined blue phases

2.1 Landau–de Gennes theory for chiral liquid crystals

In a Landau–de Gennes theory of a nematic liquid

crystal, the orientational order of a liquid crystal is

described by a symmetric and traceless second-rank

tensor Qab, instead of a director n commonly used in a

Frank elastic theory. One of the great advantages of
the Landau–de Gennes theory is that topological

defects such as disclination lines need not be treated

as singularities, which facilitates greatly the investiga-

tion of problems concerning topological defects, espe-

cially when we want to tackle them numerically.

Now we write down the free energy density of a

bulk liquid crystal in terms of the order parameter Qab.

The local part of the free energy density flocal is given
by a Landau expansion, and terms up to fourth order

are retained in many practical problems (say, the

nematic–isotropic transition, although the description

of biaxial nematics requires higher order terms). Then

flocal reads

flocal ¼ cTrQ2 �
ffiffiffi
6
p

bTrQ3 þ aðTrQ2Þ2; ð1Þ

where TrQ2 ¼ QabQab and TrQ3 ¼ QabQb�Q�a (here

and in the following, summations over repeated

indices are implied). The parameters a; b and c depend
on the material and the temperature, and a must be

positive for flocal to be positive definite. In the usual

treatment of a Landau theory, only the parameter c is

regarded as temperature dependent (linear in relative

or shifted temperature); the temperature dependence

of the other parameters is assumed to play no signifi-

cant role.

The elastic energy taking care of the spatial varia-
tion of the orientational order can be taken into

account by collecting scalar terms allowed by symmetry

that are constructed from Qab and the gradients @� . In

the case of an achiral nematic possessing rotational

symmetry and inversion symmetry, @�Qab@�Qab and

@bQab@�Q�a must be retained when we are interested

in terms up to second order in the gradients and in Qab.

Another term allowed by symmetry, @�Qab@bQ�a, is
converted to @bQab@�Q�a plus a divergent term

that can be converted to a surface integral,

@�ðQab@bQ�a � Qa�@bQbaÞ. To the best of our knowl-

edge, in previous literature on the Landau–de Gennes

(b)

(d)

(a)

(c)

Figure 1. Illustrations of the configuration of disclination
lines of (a) blue phase I (BP I) and (b) blue phase II (BP II).
Also shown are schematic illustrations of the arrangement of
double-twist cylinders in (c) BP I and (d) BP II. In each
figure, 2 � 2 � 2 unit cells are shown. Note that the size of
these figures does not reflect the actual dimension of the unit
cell (that of BP I is larger than that of BP II).
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theory, the effect of the latter divergent term has neither

been discussed theoretically nor experimentally, because

it is irrelevant in an infinite system, or in the case of the

strong anchoring limit. However, it can play some role in

the following problem concerning a liquid crystal in

contact with confining surfaces. In the present study we

ignore it for simplicity and do not discuss its possible
role. In the case of a chiral liquid crystal with no inver-

sion symmetry, an additional term that is first order in

the gradient, i.e. Qabð�� QÞab;Qab�a��@�Q�b is possi-

ble (here �a�� is the Levi-Civita antisymmetric symbol).

Collecting the three terms we have mentioned, the elastic

energy density of a (chiral) nematic liquid crystal is

written as

felfQab;�g ¼
1

4
K1½ð��QÞab þ 2q0Qab�2

þ 1

4
K0½ð� �QÞa�

2; ð2Þ

where ð� � QÞa;@bQab, K0 and K1 are the elastic con-

stants, and 2p=jq0j is the pitch of the cholesteric helix.

We can also say that q0 characterises the strength and

sign of the chirality (q0 ¼ 0 for an achiral nematic).

Note that the zeroth-order term in the gradients,

K1q2
0TrQ2, can be absorbed in flocal. We also note that

in Equations (1) and (2) we have followed the notation
of material parameters from Wright and Mermin [5], in

contrast to the elastic constant L usually used in

Landau–de Gennes theory. Furthermore, it should be

stressed that the elastic constants in Equation (2)

should not be confused with those in the original

Frank theory of elasticity in terms of n.

To study the effects of anchoring we choose the

simplest geometry: an infinite thin film confined to a
planar cell where two surfaces are separated by a dis-

tance d. Anchoring of a liquid crystal by confining

surfaces is taken into account in a phenomenological

manner by considering the surface free energy density

in terms of Qab. Here we discuss the cases with home-

otropic anchoring, and employ the form of the surface

anchoring energy first argued by Nobili and Durand

[30]. The surface free energy density is then written as

fs ¼
1

2
W TrðQ�QsÞ2: ð3Þ

Here ðQsÞab ¼ Q0ð�a�b � ð1=3Þ�abÞ defines the order

parameter preferred by the surface, with Q0 being the

degree of orientational order. To mimic homeotropic

anchoring, a unit vector�must be taken along the surface
normal. The total free energy of the system is written as

Ftot ¼
Z

�

dr3 ðflocal þ felÞ þ
Z

S

dr2 fs; ð4Þ

where � is the volume occupied by the liquid crystal

and S denotes the confining surfaces.

Equations (1)–(3) contain many material para-

meters, and their appropriate rescaling reduces the

number of relevant parameters and can clarify the

following discussions. For the bulk free energy densi-

ties flocal and fel, we employ the rescaling by Wright and
Mermin [5] and introduce dimensionless quantities:

the rescaled free energy densities

jlocal;el ; ða3=b4Þflocal;el ð5Þ

and the rescaled order parameter

wab ; ða=bÞQab: ð6Þ

We note here that the rescaled order parameter can

exceed unity. We measure lengths in units of ð2q0Þ�1

and the rescaled gradient reads �� ¼ ð2q0Þ�1�. Then

jlocal and jel are given by

jlocalfwab ��g ¼ tTrc2 �
ffiffiffi
6
p

Trc3 þ ðTrc2Þ2 ð7Þ

and

jelfwab; ��g ¼ k2f½ð��� wÞab þ wab�
2

þ �½ð�� � wÞa�
2g: ð8Þ

Here t;ða=b2Þc is a rescaled relative temperature, and

k;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aK1q2

0=b2
p

is a rescaled chirality. The parameter

�; K0=K1 concerns the anisotropy of the elasticity,

and hereafter just for simplicity we set � ¼ 1 (i.e. the

one-constant approximation).

We rescale fs so that the rescaled total free energy

reads

�Ftot;ð2q0Þ3ðb4=a3ÞFtot ¼
Z

�

d�r3 ðjlocal þ jelÞ

þ
Z

S

d�r2js; ð9Þ

with �r ; 2q0r being the rescaled length. The rescaled

surface free energy density js then reads

js ¼
1

2
wTrðc � csÞ

2; ð10Þ

with the rescaled anchoring strength w ¼ 2q0ða=b2ÞW .

We conclude this subsection by commenting on the

relevant parameters. Reliable material parameters in

the Landau–de Gennes theory for liquid crystals

showing blue phases are unfortunately unavailable

(in particular a and b). However, from typical values
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for an achiral nematic liquid crystal in [31, 32], we have

a ’ 8� 104 J m-3 and b ’ 5� 104 J m-3. Typical

values of other parameters are K1 ’ 10 pN,

q0 ’ 4� 107 m-1. They yield k ’ 0:7, which we will

employ in the following numerical calculations. For

the rescaled temperature, we choose t ¼ �1. We have

confirmed in a previous calculation [24] that BP I is the
most stable phase in the bulk with this choice of t. We

set the rescaled anchoring strength to w ¼ 0:5, corre-

sponding to an experimentally accessible value

W ¼ 4� 10�4 J m-2. This choice of w yields the extra-

polation length xw ’ 25 nm (or’ 2 in units of ð2q0Þ�1).

As we will mention later, we are interested in the cases

with the cell thickness of the order of 10 in units of

ð2q0Þ�1
, and therefore w ¼ 0:5 does not result in perfect

homeotropic alignment at the surfaces. We note that

the variation of w can significantly influence the stable

structure as discussed in [25]; weaker anchoring with

smaller w results in a structure similar to that of bulk

blue phases in most cases, in contrast to the results

presented later. As cs in Equation (10), we choose

wsab ¼ ws0ð�a�b � ð1=3Þ�abÞwith cs0 ¼ 1:44, which cor-

responds to the order parameter that minimises the
local free energy in Equation (7). In the following, all

the variables and parameters are given in a rescaled

form.

2.2 Calculation of equilibrium structures

As mentioned previously, we consider a liquid crystal

confined in a cell made up of two parallel flat surfaces
with a separation d. In the present calculations, the

range of d is set to 9 � d � 18, while the dimension of a

unit cell of bulk BP I is 12.60. Therefore, we are inter-

ested in the region in which the cell thickness d is of the

order of the dimension of bulk BP I.

We take the z-axis perpendicular to the confining

surfaces, and discretise our system using a 32� 32� 33

parallelepiped lattice, with periodic boundary condi-
tions along the surfaces (i.e. the x and y directions).

We relax the order parameter by a simple equation with

rotational diffusion

ð@=@tÞwabð�rÞ ¼ � ��Ftot=�wabð�rÞ � l�abð�rÞ
� �

;

where the time t is again appropriately rescaled. We

also let the shape and size of the system in the x and y

directions change according to the procedures pre-

sented in [24], while in the z direction the cell thickness

d is fixed. By relaxing c and the shape of the system, we

find the stable or metastable structures which give a

(local) minimum of �Ftot. As the initial condition, we

employ the stable structure of bulk BP I for t ¼ �1,
k ¼ 0:7 and � ¼ 1 obtained in [24], which is dilated or

compressed along the z direction to conform to the

thickness d of the system. As shown later, we can

obtain various structures depending on d, and to

check if those structures can exist in different d, we

also perform calculations employing those structures

as initial conditions.

3. Results

In Figures 2–4, we show some equilibrium structures

found by our calculations (as briefly described in our

letter [25] which do not resemble that of the blue

phases in the bulk. In those figures, we focus on the

configurations of topological disclination lines whose

locations are highlighted. We discuss later the profiles

of the orientational order for the former two struc-

tures in Figures 2 and 3.
We can see in Figure 2 disclination lines interwoven

in a double-helical fashion, and those double-helices are

located parallel with each other. In Figure 3, two par-

allel arrays of undulating disclination lines are arranged

almost perpendicular to each other (although, as we

will see later, they are not in fact perpendicular). Each

array is located so that a set of disclination lines forms

an undulating curved plane parallel to the confining

Figure 2. Visualisation of topological defects in a double-
helix configuration. Side view (top) and top view (bottom).
The confining surfaces are shown as grey planes. We show
here 2 � 2 unit cells connected by periodic boundaries. The
cell thickness, d, is 15.
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surfaces. We also find a staggered structure of disclina-

tion lines in contact with the confining surfaces and

shown in Figure 4. Disclination lines in contact with
one confining surface look like inchworms, and align

parallel to each other. While in the bulk cubic blue

phases the disclination lines are (at least locally)

straight, in the presence of confining surfaces they

have become curved. As we will see later, the structures

in Figures 2 and 3 have several features in common; one

is that the disclination lines do not touch the confining

surfaces. Although Alexander and Marenduzzo [21]
have reported structures of disclination lines similar to

those found in Figures 2 and 3, they are transient states

found when a strong electric field is applied to bulk blue

phase II. As far as we know, those three structures in

Figures 2–4 have never been observed in experiments,

or discussed in theoretical or numerical studies as pos-

sible stable states of a liquid crystal.

In Figure 5, we show the thickness dependence of
the total free energy of the system per unit area,

F ¼ ð�Ftot � f0dÞ=A, with f0 and A being the free energy

density of bulk BP I and the area of one confining

surface, respectively. For comparison, we also present

the energies of the equilibrium structures similar to

that of bulk BP I, and of a cholesteric phase in a

uniform lying helix (ULH) configuration with the

helical axis parallel to the confining surfaces. Note
that the ULH configuration is energetically more

favourable than the Grandjean configuration whose

helical axis is along the surface normal; the latter is

incompatible with the homeotropic alignment at the

surfaces. The isotropic phase is unstable in the bulk in

the present case with t ¼ �1, and does not appear as a

(meta)stable state in our system. We find that the

double-helix configuration presented in Figure 2 is
indeed stable in the range 10 & d &14. For d * 14,

the most stable structure is the parallel-array config-

uration shown in Figure 3. From Figure 5, a first-

order transition between those two structures is

expected and hysteresis can exist with the variation

of d. The transition could also be induced by a change

of temperature, although we have not yet investigated

this possibility. The staggered structure shown in
Figure 4 can be found to be the most stable one only

in a very narrow range around d ’ 10. At least in the

range we study here, structures similar to the bulk BP I

are found to be the energetically most favourable

structure. This is possibly due to the energetic penalty

of disclination lines in contact with confining surfaces

with homeotropic anchoring; around disclination lines

found in bulk blue phases (wedge disclinations of
topological charge �1=2), the director tends to be

parallel to the plane whose normal is along the discli-

nation. This orientational order is incompatible with

the homeotropic alignment at the confining surface

when the disclinations touch the surface. We also

notice that the structures in Figures 2 and 3 act as a

harmonic spring in contrast to the cholesteric ULH

Figure 3. Visualisation of topological defects in a parallel-
array configuration. The cell thickness, d, is 15.

Figure 4. Visualisation of topological defects in a staggered
configuration. The cell thickness, d, is 11.
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state which would yield an attraction between confin-

ing surfaces almost independent of the cell thickness.

Here we discuss the similarity between the double-

helix and the parallel-array configurations by showing

their respective orientation profiles in Figures 6 and 7.

We can find that the orientation profiles labelled by xz

and yz are almost indistinguishable between those two

profiles and the difference can only be seen in the
profiles xy; disclination lines do not cross the plane

(mid-plane of the cell) in the parallel-array configura-

tion. The arrangement of double-twist cylinders is

again almost the same for those two configurations.

The similarity can also be recognised in the bottom

figures of Figures 2 and 3. That is, the reconnection of

disclination lines at the points where two lines come

close can change one profile into the other. This
inspection can explain qualitatively why the double-

helix configuration is energetically preferred over the

parallel-array configuration when d is relatively small.

For smaller d in the parallel-array configuration, two

almost-orthogonal disclination lines come closer and

experience a strong repulsion from each other.

However, once the reconnection occurs and the paral-

lel-array configuration is transformed into the double-
helix one, the disclination lines no longer feel the

repulsion from the others. As mentioned previously,

the transition between the two structures should be

first order, and, therefore, their coexistence is possible

at the transition point. We could also speculate that

thermal fluctuations might result in a mixed config-

uration of double-twist and parallel-array close to the

transition. We finally note that the two perpendicular
directions along the confining surfaces (x and y) are no

longer equivalent as is obvious from Figures 6 and 7,

in contrast to the bulk blue phases I and II possessing

cubic symmetry. Therefore, the two parallel arrays of

apparently perpendicular disclination lines as shown

in Figure 3 are in fact not orthogonal.

4. Conclusion

By using a numerical calculation based on a

Landau–de Gennes theory describing the orienta-
tional order of a liquid crystal by a tensor order para-

meter, we have investigated the defect structures for a

chiral liquid crystal under a strong confinement

between two parallel flat surfaces. We have shown

0.75

 0.8

0.85

0.9

0.95

1

9 10 11 12 13 14 15 16 17 18

Cholesteric (ULH)

Figure 5. Variation of the free energyF with the cell thickness d. In addition to F for the structures shown in Figures 2–4, we
also show F for the structures similar to bulk BP I (� and *), and for a cholesteric phase with a uniform lying helix (ULH)
configuration.

xz

xy

yz

xy

yz
xz

Figure 6. Orientation profiles of the double-helix
structure in Figure 2 at the three cross sections (the
location of the cross sections can be found in the right-
hand bottom figure). Disclination lines and the axes of
double-twist cylinders are shown by crosses (�) and open
circles (�), respectively. In the right-hand bottom figure, the
arrangement of double-twist cylinders with respect to the
disclination lines is illustrated schematically by thin
straight cylinders.
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the possibility of various defect structures not found

nor discussed previously in the liquid crystal field as

stable structures. For example, we have found a par-

allel array of double-helix disclinations, a set of two

arrays of parallel undulating disclinations and a stag-

gered structure of disclinations in contact with the

confining surfaces. We have calculated the free energy
of these structures and demonstrated that the former

two can indeed be stable when the cell thickness is of

the order of the dimension of the unit cell of the bulk

blue phases. We have discussed the similarity between

those two configurations and pointed out the possibi-

lity of first-order phase transition.

Experimental verification of these possible struc-

tures is strongly encouraged, and much remains to be
investigated in the behaviour of cholesteric blue phases

under strong confinement, for instance, the effect of

temperature change, anchoring conditions (say, planar

anchoring) or the type of confinement (cylindrical

capillary etc.). Nevertheless, we believe that we have

shown an important and intriguing example of frustra-

tions between the self-organised structure of a (bulk)

liquid crystal and the external condition imposed by
confinement. We further note the similarities between

blue phases and other systems. It has been argued

theoretically [33–35] that chiral ferromagnets such as

MnSi can have ordered structures analogous to blue

phases. Topological excitations called Skyrmions, of

which double-twist cylinders are a typical example,

have been known to exist in a wide variety of physical

systems such as spinor Bose–Einstein condensates [36],
and electrons confined in two-dimensions [37]. We

hope, therefore, that our study will stimulate further

theoretical as well as experimental studies on novel

ordered structures of liquid crystals and other con-

densed matter systems induced by such frustrations.
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